1

Distributed Context Space (DCS) -
foundation of semantic P2P systems

Thomas Schwotzer

HTW Berlin
Wilhelminenhofstrasse 75A, 12459 Berlin, Germany
Thomas.Schwotzer@HTW-Berlin.de

Summary. Nearly any social network application is based on the client-server
paradigm. This has several serious drawback (data security, costs). This paper in-
troduces the concept of Distributed Context Space which is a concept for loosely
coupled (mobile) P2P semantic systems. Shark is a reference implementation of DCS
and iSphere is a social network application based on Shark. This paper shows how
Semantic Web approaches combined with P2P can substitute the C/S paradigm in
Web 2.0.

Key words: P2P, Distributed Semantic Web, Ad-hoc Networks, Social Networks

1.1 Introduction

The terms Internet and World Wide Web are often used as synonyms but there
are fundamental differences: Internet is a worldwide connection of computers
by means of the IP protocol. IP routes data through a dynamic network of
connections. There is no server neither in the IP protocol nor in the Internet.
TCP introduces flow control and reliable data transfer. From developers point
of view, there are TCP server and clients. But it is just a technical issue. Each
computer in the Net can be TCP client and server.

Client and server are intrinsic concepts of the World Wide Web, though.
Web server store data. Web clients can get access to them. HTTP is the well-
known communication protocol in the Web. The Web has its roots in FTP
and Gopher server. Such data server had been created in a time in which
computing power and hard drives were very expensive. It was not feasible to
have all data in a desktop PC but it was possible to have a slim and cheap
computer on the desKl. This time is over. Ordinary PCs are delivered with at

! There were often called terminal because there were the endpoint of a connection
from an expensive and huge server computer somewhere in the cellar in the IT
department.

2 Thomas Schwotzer

least some hundred megabytes on the hard drive. Internet bandwidth isn’t a
technical challenge any more.

Web-Programming became the dominant way of building distributed sys-
tems in the Net. In its beginning, it was seen as a more convenient interface to
FTP server and actually it was not more. For a growing number of develop-
ers, client-server (C/S) programming with Webframeworks became a kind of
natural and sometimes only thinkable way of building Internet applications.
This is a Lock In phenomenon, some call it a dangerous effect [Lanl0].

Web applications are C/S applications. Web 2.0 doesn’t differ from the
WWW from technical point of view. It is still HTTP and HTML usually
enriched with code running in the WWW browser which makes it faster and
colorful. Web 2.0 applications allow users to changed the content on the server.
Wikipedia, Wikis in general, blogs and social networks applications are well-
known.

There are major differences from the application perspective, though. Web
2.0 users create a network to exchange data, e.g. rumors, pictures, experiences.
Users are looking for others which similar interests. Especially social networks
are the Internet pendant of the often cited ancient forum. People can simply
go there, meet and have a talk.

But there is a fundamental and crucial problem with Web 2.0 based social
networks: There is a server all the time. This has several remarkable draw-
backs:

e Personal profiles are stored on a server. There is no principal technical
barrier that prevents misuse of personal datafd. Moreover, the core of the
business concept of social network are dealing with user profiles: They
run the WWW infrastructure and sell personal and private data of there
users e.g. to marketing companies. Thus, joining a social networks means
giving away personal and sometimes sensitive data to a crowd of unknown
information dealer.

e Server based Web applications are potentially visible to the whole Web.
From a technical point of view, each private discussion in a forum could
be visible in the overall net. Blogs and Wikipedia are created as worldwide
information exchange platform. Social networks give the impression of
privacy, though. It is just an impression. An incredible number of such
private discussions can be found with Web search engines. Especially young
users with less IT experiences are tend to became victims of such not
expected data leaks. Web based social networks are not a save and private
place. Web based social networks are all the time, 24 hours 7 days a week
under wordwide observation. It shouldn’t be compared with an ancient
forum - it is a kind of big brother shoul.

2 Encryption isn’t an option. Platform functionality (running on a server) needs
processable data.
3 http://en.wikipedia.org/wiki/Big_Brother_(TV series)

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 3

e Applications become mobile due to the fast evolution of mobile devices
from heavy telephones to fully fledged mobile computers. Modern Smart-
Phones support a variety of communication protocols in different layers.
They support GSM, GPRS and other 3G protocols, e.g. UMTS especially
in Europe. Bluetooth and Wireless LAN are supported on a growing num-
ber of SmartPhones.

Usually, there are two general ways of building mobile applications: A
native application can be build which runs with i0S, Android, Symbian,
Windows Mobile, a mobile Linux etc. Native applications usually commu-
nicate with a server via TCP or HTTP.

Nearly any SmartPhone comes with a Web browser. Mobile Web appli-
cations can be build just by writing code in a script language which is
supported by a mobile browser. There are frameworks like PhoneGapﬁ,
which supports cross platform mobile Web development.

Mobile Web 2.0 are C/S applications as well. Each data is sent from the
mobile phone to a server via public land mobile networks (PLMN). Each
data transmission consumes resources (money, bandwith, time). Imagine
a scenario in which two mobile users are standing nearby exchanging a
picture. In worst case, it runs through two different PLMNs and produces
costs for both partners - just to bridge a gap of several meters. See [Sch09a
for a picture and the full worst case scenario: Mobile access to social net-
works wastes resources.

Building a WWW application has two aspects: Building a server and client.
Server technologies were developed quite fast in the beginning of the Web.
There are a number of well-known Web server supporting different program-
ming languages. The Web 2.0 was a booster for tools and frameworks for rich
client development. Web GUIs can be build even without detailed knowledge
about computer science. Building a Web application with developer frame-
works and tools in general doesn’t require computer scientists any longer.
Very good.

Nevertheless, a C/S architecture isn’t an appropriate way of building so-
cial networks due to at least the reasons above. This paper introduces the
concept of Distributed Context Space (DCS) and a reference implementation
called (Shark - Sharked Knowledge). DCS is based on the P2P paradigm. It
uses semantic technologies to transmit data and interests between peers. DCS
fits to spontaneous networks and the reference implementation proofed that
DCS allows to build a social network application without a server. This sys-
tem is called iSphere. It runs on less mobile PCs which communicate via fixed
Internet protocols and on mobile phones communicating via PLMNs but also
via Bluetooth. DCS doesn’t make any assumption about the underlying pro-
tocol. It even runs on top of the WWW protocols - with a major difference:
Each DCS node has its own WWW server. Thus, the client can be coded
with all sophisticated GUI building tools. The communication between the

4 http://www.phonegap.com/

4 Thomas Schwotzer

DCS nodes is done with the DCS protocol, though. This approach is similar
to the concept of Diaspora, see section The difference are in the concept
of finding other users. DCS uses a concept called interest which is a semantic
data structure. Details and examples will be presented and discussed.

1.2 Distributed Context Space (DCS)

1.2.1 Communication Concept - KEP

Each communication takes place in a context. People use different words, offer
different ideas, personal opinions etc. depending of the context. A talk with
friends in a bar differs fundamentally from a presentation at a trade show.
Context is a core concept of DCS.

DCS only describes the communication between two peers. In the first
step, a peer shall be seen as an individuald.

Peers can communicate. The Knowledge Exchange Protocol (KEP) is used
to formalize this process. KEP is an asynchronous, stateless protocol. There
are two commands.

Expose: A peer can expose an interest to another peer in an asynchronous
fashion. The issuer cannot be sure that its interest has reached the re-
cipient (the remote peer). An interests states about what, when, where
and with whom a peer is willing to communicate.

Insert: A peer can send knowledge to a remote peer in the same asyn-
chronous way. Knowledge is a number of information in arbitrary formats.
Information is set into a context when send. Details will be explained in
this paper.

KEP doesn’t define neither an order of KEP messages nor the reaction
on a KEP message. DCS peers are autonomous peers. The can send message,
receive messages whenever they want to. Let’s have an example. A peer (lets
call it Anton) can e.g. walk around and ezpose any other peer e.g. Bianca
its interest in e.g. soccer. Bianca retrieves such an interest can do whatever
she wants. She can answer and declare that she is also interested in soccer.
She can also send an insert including knowledge which actually is a message,
picture or movie about a soccer game. She can also store that interest and
expose any other peer Antons’ interest. She can also ignore Anton and his
interests.

A peer can also send knowledge to any passing peers. This is the digital
pendant for delivering leaflets in e.g. a shopping mall.

5 It can be shown that DCS peers can represent groups of persons. It can also
be shown that federations of peers can be build which model information and
knowledge flow in hierarchical organization. This is out of scope of this paper.

5 In the reference implementation, an relay peer is introduced which allows a asyn-
chronous exchange even over synchronous protocols like TCP.

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 5

O O
KDCS peer DCS peer{jll
‘ expose .
KB KB

extract insert assimilate

Peer offering interest Silent peer
and knowledge

Fig. 1.1. Active and passive (silent) DCS peer

DCS assumes that each peer is an independent entity. It cannot be de-
scribed what a peer has to do. It only describes a protocol between peers.
Peers can even betray and lay. That’s reality: Each information which is
passed from a local data storage to another entity can potentially be used
in each thinkable way. Encryption can be used to ensure, that information
cannot be read by third parties. But no concept can really be ensure that the
recipient uses information as the sender wants it to do.

DCS assumes that each peer has a conceptual knowledge base in which
information can be stored. Each peer can get new knowledge from other peers
by means of the KEP insert. Each peer can decide how to handle such knowl-
edge. The decision will usually strongly depend on the context. Knowledge
can be dropped, it can (in parts) be added to the knowledge base. The pro-
cess of adding new knowledge to the knowledge base is called assimilation.
Peers can send knowledge. Taking knowledge from the local knowledge base
is called extraction.

1.2.2 Interests and Context Space

An interest describes the context in which a peer is willing to communicate.
It has seven facets:

topic (cardinality: 0..n) The topic facet describes about what a peer is
willing to communicate. Soccer was the topic in the example above. Each
interest can have an arbitrary number of topics. An empty topic facets
indicates that the peer is interested in everything.

peer (0..1) The peer facet describes the peer itself. Each peer can reveal its
identity. The peer facet is not the same as a page in a social network. The
peer facet doesn’t contain any picture etc. It contains just a single name
and an arbitrary number of addresses (TCP, Bluetooth, E-Mail etc.). A
peer doesn’t have to reveal its identity. It is an anonymous peer in this
case. Obviously, authentication certification techniques should be used to
ensure that a peer is who it claims to be.

6 Thomas Schwotzer

remote peer(s) (0..n) This facet is used to describe with whom a peer
wants to communicate. Such a concept is often called a white list. An
empty set is interpreted that the user wants to communicate with any-
body. Peers who get an interest can follow this list but are also free to
ignore it. Peer Dave can explain that it only wants to communicate with
peer Ester about a topic. It is possible that another peerFabius gets the
original interest. He can now contact Dave. Dave has no way to prevent
Fabius from sending a message. But Dave is free to ignore any message
from him.

originator peer (0..1) Peers can exchange knowledge. Knowledge is infor-
mation in a context. The originator facet describes who actually put in-
formation in that context. Imagine a peer L that holds a little library.
Another peer A may have access to L’s library and gets a copy. A third
peer B could be interested in articles about topic ¢. B might also know
that L has a well organized library and other peers have access. B could
declare its interest: B (peer facet) is interested in information about t
(topic). It would communicate with arbitrary peers (remote peer) but it
is only interested in knowledge which has been inserted by L (originator).
An originator isn’t necessarily the author. It is a peer that put information
into a context.

direction (0..2) This facet describes the way in which knowledge is ought
to flow. Two values are allowed in this facet: in and out. In states an
interest to retrieve knowledge and out states that the peers is willing to
send knowledge. Both directions are allowed if this facet isn’t specified or
both tags are set.

time (0..n) A peer can define when (periods of time) it is willing to commu-
nicate. As already mentioned: This facet can be ignored by other peers.
Each peer can contact another peer whenever it wants. Nevertheless, the
holder of the interest can ignore message which are retrieved outside such
a window of awareness.

location (0..1) This facet is similar to the time facet. It can be used to
describe constraints at which places a communication shall take place.

The seven facets are independent. A change e.g. in the peer facet has not
necessarily an impact on other facets. From a mathematical point of view,
the seven facets spawn a seven dimensional space which is called the context
space. Defined facets are points on the axis of coordinates. Thus, each interest
defines a subspace of the overall context space.

The term context space is derived from [Len98|. A context space has been
used in the CYC project to split a knowledge base to make it processable. The
CYC project tried to create knowledge base containing the overall knowledge
of the world - often called world knowledge. DCS follows the concept of mi-
crotheories which is the diametric approach of building a worldwide knowledge
base, see [Sow(0].

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 7
1.2.3 Semantic Tags, Peer Semantic Tags

DCS uses semantic tags to define points on the seven axis of the context
space. The concept will be motivated at first and defined afterwords.

One crucial problem in spontaneous networks of semantic peers is the
vocabulary. Anton was interested in talking about soccer. Unfortunately, it is
just an English word. Other peers would call it futbol, Fussball etc. pp.

Ambiguous words and names are a well-known problem even in Web 2.0:
Tagging is used to describe the topic of e.g. an article. Tags are words. Words
are ambiguous. Java could mean an island, a coffee or a programming lan-
guage. Java is a homonym in this case: The same word denotes different
concepts. There are also synonyms: Different words denote the same con-
cept. Moreover, names can change. St. Petersburg in Russia was also called
Leningrad, Petrograd and St. Petersburg. New York was formerly known as
New Amsterdam, Chemnitz in (East-Germany) was called Karl-Marx-Stadt
between 1953-1990 etc.. Multilanguage support can be seen as variant of han-
dling synonyms. Spain is also called Espana or Spanien. The same country
has different names in different languages.

Semantic Web deals with such problems. Topic Maps [GM05] (ISO 13250)
defines a represenation format for knowledge. A central concept is the topic
which was foundation of the semantic tag in DCS.

A topic represents a thing (a subject) in the world, e.g. the city Cordoba.
Unfortunately, Cordoba is a homonym. There are cars which are named after
this city. Topic Maps solves this ambiguity by means of subject indicators (SI).
A subject indicator is a reference to information (e.g. a text, a website) which
describes the concept. An SI for Cordoba could be an entry in Wikipedia or a
link to a Website of the city. Each topic can have an arbitrary number of Sls.

SIs are a kind of wordbook of the language. SIs describe the meaning of
the topics. Topics are the vocabulary.

Wordbooks can even be mixed because each topic can define its meaning
by referencing different sources. The page http://www.cordoba.es/ describes
Cordoba as well as a page in the English Wikipedi

Thus, a peer A that understands Spanish and English could use both Sls
to define its topic for Cordoba. Another peer B might not speak Spanish but
English and lets say German. It could use the same link to Wikipedia and
additionally a link to a German website about the city. Finally, A could learn
a German web page that described Cordoba and B could learn a Spanish Web
page for the same topic.

ISO 13250 topics have some more features. DCS was designed to be as slim
as possible. Therefore, a semantic tag has been defined to have two parameter:
at most one name and an arbitrary number of SIs. A semantic tag is an
enhanced Web 2.0 tag: It has a name like a tag but also additional subject
indicators.

7 http://en.wikipedia.org/wiki/Cordoba_Spain

8 Thomas Schwotzer

Peers are described by semantic tags. Peer’s SIs can be links to business
and/or private homepages. It can be a unique number. It can be anything
that is unique to a person.

Name: Anton
Addr1: anton@xy.net

Addr2: www.antonssrv.net
SI1: www.firmaA.net/anton
S12: www.golfClubX/anton

Fig. 1.2. Peer semantic tag for Anton (example)

In DCS, peers must have another feature: They must have an address to
which KEP message can be send. Therefore, the peer semantic tag was
introduced. It is an semantic tag with name and SIs and with an arbitrary
number of (ISO layer 2-7) addresses. There are also derived semantic tags for
location and time but this is out of scope of this paper.

Semantic Tag Sets

The W3C standard RDF[W3C04bl [W3C04a] uses a so-called triple as basis
for a knowledge base. There are nodes which stands for concepts. One node
can reference another node by means of a predicate. A RDF predicate is a
directed, labeled reference from a node (which plays the role subject in this
case) to the another node object.

A network of semantic concepts is called ontology. An ontology represents
a domain of discourse and is used e.g. for automated reasoning.

DCS adopts the concept of RDF. A semantic tag can reference each other.
A single reference type is defined in DCS: the super/sub relation. Other ap-
plication specific reference types can be defined. There are three kinds of
ontology (semantic tag sets in DCS speech) types:

Plain Semantic Tag Sets are sets of semantic tag which are not referenced
at all.

Hierarchical Semantic Tags Sets are taxonomies: A tag can be super tag
of other sub tags.

Semantic Net Sets allow arbitrary references between tags. The references
are application specific.

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 9

1.2.4 Context Points and Learning

Information are stored in a knowledge base. The knowledge base has seven
dimensions. Points of the axis are semantic tags. The axises spawn a context
space. Points in the context space are called context points (CP). A context
point has seven coordinates. Information can be attached to context points.
Knowledge is a set of context points with the attached information.

Lets make a (lengthy) example:

Assume a peer A is interested in space flight which is a topic. It can declare
an interest:

peer: A, originator: any, remote peer: any, time: any,
location: any, direction: in, topic: space flight

Note, all these facets contain semantic tags. The names (e.g. A) are place-
holders for the whole semantic tag.

Peer B might strongly belief that the US landing on the moon was a fake.
B might also have collected ”proofs” of this thesis which are stored in its
knowledge base under the topic landing on the moon which is sub tag of space
flight.

Another peer C might also be interest in the old moon program but
strongly belief that astronauts were on the moon. It has pictures and old
articles from the news etc. It has also put the whole stuff under the topic
landing on the moon which is sub tag of space flight.

B and C might also described an interested in discussing landing on the
moon.

What happens if B und C'meet? Both find out that they are interested in
the same topic. Both would exchange information. B would receive pictures
etc. from the landing. Where would it be stored?

B would create a new context point with axis topic: landing on the moon
and axis originator: C. It wouldn’t interfere with its own information be-
cause B’s information are stored with B on the originator axis. There are two
different context points. They have the same topic but different originator
coordinates.

The same would happen with C. What happens if A meets B after all?
First of all, A would find out that there is a sub topic of space flight called
landing on the moon. A can now decide whether to learn this new topic or
not.

A could also retrieve knowledge about space flight from B with up to two
context points. Both have the same topic coordinate: landing on the moon.
The originator dimension would be different (B and C). A could now have
two more context points. One holds documents that try to proof that nobody
was ever on the moon. The other would hold historical information about this
event.

It is just one scenario. It could be different. B could e.g. throw any docu-
ment away which is from C. So could C. Thus, B would never tell A about C.
A could refuse to talk to B or C at all...

10 Thomas Schwotzer

This example illustrates some impacts of the concept:

e A single knowledge base can store contradictions. Yes, the world, is full of
contrary meanings: What is false, what is true? It isn’t clear very often.
DCS allows to keep contrary documents in the same knowledge base but
at different points in context space.

Any peer is free to deliver whatever information it wants.

Peers can learn from each other. Learning takes place in two ways:

— Semantic Tags can be learned. A can learn that landing on the moon
is a sub concept of space flight. It can enhance its topic dimension.

— Peers retrieve knowledge which are context points and attached infor-
mation. Peers can integrate (assimilate) retrieved context points into
their knowledge base but they don’t have to.

e Peers can adopt information. In the example above, A has no personal
information about the landing on the moon. It knows what B and C think
about it. Sooner or later, A could decide to join one side. A could say: Yes,
I believe B. From DCS point of view, it could move (or copy) by changing
the originator axis: If A replaces B in this axis with A it would change
semantics: A would now state, that A beliefs in all documents which are
attached to this CP. A beliefs in it. A does not claim to be the creator of
the documents but it commits to the opinion.

Knowledge Base of B Knowledge Base of A

\ ry |

topic

space flight
super
sub

topic ‘

space
Cs

documents

(r—cr— —()—

peer peer

B has got documents of C and itself. A doesn't even know moon landing...

Fig. 1.3. Learning during knowledge exchange

1.2.5 Background Knowledge and Contextualization

This section gives a more formal and detailed view on the process of interest
and knowledge exchange. In this chapter, the interaction between the user

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 11

and the software is described in more detail. In the remaining paper, peers are
understood as a both - the owner of the system and his/her software. Only in
this section an explicit distinction is made between the software (DCS engine)
and its user.

User A can define an new interest with its DCS engine. This can be done by
denoting semantic tags which are already in the knowledge base. This tags are
called anchor. User A can furthermore define fragmentation parameter
for each dimension. This is done by each dimension of the context space.
The newly created interest is called a local interest. It contains anchor and
fragmentation parameter for each dimension.

A remote interest is calculated by means of local interest and the current
knowledge base. A contextualization] algorithm is used. Principles of the
algorithms will be explained now. At first an empty context space is created
which is called remote interest. It has seven dimension but has no entries.
Note, no entries means anything. A non specified interest covers all thinkable
context points. The following algorithm shrinks makes this unspecified interest
more specific.

1. A list of semantic tags is created. It contains all tags which are in the
anchor set and also in the knowledge base. All tags in this set are added
to the set in the remote interest.

2. Fragmentation parameter contain two parameters: A non negative number
called depth and a list of allowed association types. In a second step the
corona of each anchor is created. The corona contains all semantic tags
in the dimension which can be reached via allowed association types in
the semantic tag set an which have a distance not longer than distance to
the anchor. The corona is added to the remote interest.

The center (or seed) of each corona are the anchor tags. The corona is also
called background knowledge. Remember the previous example: B was
interested in landing on the moon which is a sub tag of space flight. User B
could mark landing on the moon as anchor tag. B can also define fragmentation
parameter, e.g. B could define allowed association type as super type and the
depth might be one. Now, the corona would have a maximum diameter of one
and only tags would be added which have a super relation to the landing on
the moon. The corona consists only of space flight in this case.

This process can be formalized: K x IL = I. Knowledge base K is contex-
tualized with local interest IL. The result is I. I is a remote interest an can
be exposed to another peer.

Lets say B gets an interest of A (I4). B has also a remote interest (Ip).
B has received A’s interest a tries to find out, if both have a mutual interest.

8 The termin contextualization was already used and probably invented by
Theodorakis[The99]. He developed a mathematical model to split a knowledge
base. There are hardly similarities between his concept and DCS contextualiza-
tion.

12 Thomas Schwotzer

This can also be done by contextualization: gy = I 4 *x I . All tags in I g are
interpreted as anchor tags and the fragmentation parameter are assumed to
be null. The algorithm find concepts which are of interest for both sides. Ip4
is also called the effective interesty.

An interest is a sub context space. A’s interest as well as B’s interest is an
sub context space. The effective interest in the intersection of both.

If B - the recipient - is willing to send knowledge it can extract it from the
knowledge base. The sub space can calculated by contextualization: K4 =
K p*Ipa. The knowledge base is contextualized with the effective interest. In
other words: All context points are found which are in the intersection of the
interest of A and B. The result is knowledge which can B send to A (Kpa).
It is also called the exchange knowledge.

A receives Kpy from B. KEP is an asynchronous protocol. A might not
remember the fact that is has already send an interest. Moreover, the A’s
interest can be changed over time. DCS Engine A should now take the knowl-
edge and has to find out what to insert into its own knowledge base. This can
be done by its own interests:

Kassimilate = Kreceived * IA

Any received knowledge is contextualized with an interest. The result is
knowledge which is of interest for the recipient and can be added to the local
knowledge base.

1.2.6 Interests - a knowledge layer addressing schema

The ISO-OSI reference model defines seven protocol layers for open systems
interconnection. Each layer has its own addressing schemes and protocols.
OSI uses the term communication endpoint which is an entity that actually
performs the layer n protocol. Endpoints on the same layer communicate.
Nevertheless, the actual layer n protocol data units are wrapped into layer
n-1 protocol data units and send over a n-1 protocol which is wrapped into a
n-2 layer data unit etc. pp. etc until they have reached layer 1. The physical
layer actually transmits data.

KEP is a layer seven protocol. KEP addresses are interests. Interests de-
scribe who (peer) wants to communicate with whom (remote peer) about what
(topic and originator), when (time), where (location) and in which direction.
Interest describe a sub context space.

A DCS user defines its interests with its local context space. It uses a
vocabulary which can potentially be understood even be unknown peers due
to the semantic tags. Interests are an addressing schema that fit to loosely
coupled spontaneous semantic networks. Even peers can bind which never
meet before: DCS is an open system.

The context space concept allows describing the whole communication con-
text in a semantic and thus less ambiguous manner. Moreover, the knowledge

9 Note, contextualization isn’t a commutative operation.

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 13

base makes the communication context persistent. Actually, the knowledge
base is a persistent local context space owned and managed by a single peer.

1.3 Related work

Multidimensional addressing schemes are not new. Distributed Hash Table
(DHT) is a multidimensional addressing principle for P2P systems which is e.g.
used in Chord[Sto03]. A hash function creates n numbers for each information
which has to be stored in the systems. Each number becomes the coordinate
of the information. Each DHT peer covers a subspace in this n dimensional
space. DHT allows to calculate which peer stores information with a given
hash code.

DHT and DCS differ fundamentally. DHT peers are managed by the overall
system. They get a subspace when entering the system. They have no choice
- they have to store and restore information when asked. The n dimensional
DHT space is based on hash codes and not on the semantics neither of the
content nor of any communication constraint.

Kademlia]MMO02| and BitTorrenf™] are other protocols which organize
replicates and optimize retrieval of information in P2P system.

DHT, Kademlia, BitTorrent and other related P2P approaches are means
to organize information. Peers are governed by the system. They store and
restore information at command.

Autonomous DCS peers are autonomous entities, though. They store and
offer what they want and they can describe when interest or knowledge ex-
change is allowed. DCS doesn’t care about copies and replicated information
like DHT does. Nevertheless, replications strategies can be build with DCS.

Diaspor is a P2P social network. It is a Web application but the Web
server runs locally. The P2P communication connects the peers. It is the same
principle: Peers store their own data and communicate directly if they want.
Diaspora has all drawback of the Web 2.0 tagging that was already defined.
DCS is uses a semantic addressing schema and supports arbitrary underlying
protocols.

Shark is a reference implementation of DCS. Shark hasn’t the maturity of
Diaspora yet. It is in an alpha version yet. But Shark based applications work
on a broad range of systems: PCs, Android, J2ME, sensors which communicate
via Bluetooth, TCP, HTTP and E-Mail.

Sowa [Sow(0] made a general distinction between two general approaches
to understand a distributed knowledge base. The first approach is called world
knowledge. Each knowledge in the world is conceptually seen as a part of an
overall knowledge base. There is a wish that sooner or later all contradictions
are resolved and the overall knowledge base is consistent and finished. This

10 http://www.bittorrent.com/
1 http://www.joindiaspora.com/

14 Thomas Schwotzer

was the dedicated aim of the CYC project. Some Web 2.0 enthusiasts seems
to think the same and Wikipedia and / or similar systems would became the
place where the final knowledge will be stored and the end of all times would
have been reached, see also [Lan10].

The opposite approach is called micro theory. It states, that knowledge
bases (KB) are independent entities which evolve. KBs can exchange (parts
of their) micro theories (knowledge). There is no overall KB but a number of
independent and communicating KBs.

There is no trend toward a reduced number of contradictions. Contradic-
tions are part of the knowledge creating process. DCS follows the idea of micro
theories.

1.4 Shark - Shared Knowledge

First ideas of Shark were published in 2002 [Sch02] [SG02]. It was more or
less a theoretical sketch. The concept of a multidimensional context space
was developed between 2004 and 2005 [Sch04l [MS05]. The seven dimensions
and the structure of interests are new results in the project and hasn’t been
published.

In 2008, we have started an open source project (Shark Framework) which
implements the DCS concept[Sch08].

Shark implements the DCS knowledge base in multiple ways: There is an
in memory implementation as well as an implementation above a pure file
system. It works on any Java device. Next steps will be an integration of
Android SQLLite database and RDF knowledge base (Jena framework). A
concept of mapping to the ISO Topic Maps is already published [Sch09b].

Implementation details of Shark cannot be discussed in this paper. But the
principles of writing an Shark based application can be illustrated. Shark is
written in Java. Currently, J2SE, J2ME and Android is supported. Objective
C support is planned.

1.4.1 User Interfaces

There is an SharkKB interface defining methods of the database. Shark de-
veloper can manage context points as well as each dimension in the local
knowledge base. the following lines illustrate just a few methods for CP man-
agement. Have a look in on the sourceforge page for more details.

ContextPoint getContextPoint(ContextCoordinates coordinates);

ContextPoint createContextPoint (ContextCoordinates coordinates,
String[] dimNames) ;

void removeContextPoint (ContextCoordinates coordinates);

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 15

void assimilate(Knowledge k, FragmentationParameter[] otps,
LocalInterest effBackground) ;

Knowledge extract(Locallnterest subSpace,
FragmentationParameter[] otp,
FragmentationParameter[] fp);

The code fragment above contains declarations of the methods extract
and assimilate. Both are based on the contextualization algorithm which was
discussed in [[2.5 Thus, Shark application developers don’t have to deal with
search function in complex ontologies.

Actually, application developers can use predefined knowledge base imple-
mentation and can focus on the application specific logic.

1.4.2 Knowledge Ports

An interest is created by means of the Shark knowledge base with the following
method.

Locallnterest createInterest(AnchorSet as,
FragmentationParameter fp[]);

A local interest is just a data structure. A Knowledge Port (KP) is the
KEP protocol engine - the communication endpoint in OSI speech. It takes a
local interest, calculates the remote interest (as described in [[Z0]) and waits
for incomming request. It also observes the environment for new peers. In can
establish a connection for the first contact with a new peer.

Connection establishment etc. is managed by the framework. Application
developers can use the business logic of predefined KPs. They can also define
their own business logic. In this case, a new knowledge port class must be
derived from the class KnowledgePort. Two methods must be implemented:

void doInsert(Knowledge k, KEPResponseFactory respFact);

void doExpose(ReceivedInterest i, KEPResponseFactory respFact);

This API looks (hopefully) similar to the Servlet API. There are two KEP
commands, expose and insert which can be retrieved by an engine. It can
either get an interest or knowledge from another peer. The respFact (response
factory) is to create a KEP response. The underlying protocols are hidden from
application developers. Actually, a request can come in with Bluetooth and
the KEP response is send with TCP. This aspect is discussed in section [LHl

16 Thomas Schwotzer
1.4.3 Protocol binding

KEP is a layer 7 protocol and uses other protocols to actually be transmitted
to other peers. There must be a protocol binding defined for each protocol.
Currently, bindings are defined for TCP, Bluetooth (partly: some BT profiles),
HTTP and E-Mail (POP/SMTP).

The framework is open for new protocol bindings. There is a concept of
protocol stubs in Shark. It is simply an interface which has to be imple-
mented. The interface for connection oriented protocols shall be shown to
illustrate the idea.

public interface StreamStub extends Stub {
public StreamConnection createStreamConnection
(String gcfAddr) throws IOException;

public String getLocalAddressQ);
public void stop();
}

There must be a way to establish a StreamConnection which is a combina-
tion of InputStream and OutputStream. Each protocol stub must understand
the Java Generic Connection Framework (GCF) addressing schema. Shark
uses this schema to define addresses e.g. in the parameter gcfAddr.

The local address is the address of the local endpoint of the protocol, e.g.
the TCP server name including the TCP port. The String must be a GCF
address. Method stop() asks the protocol engine to stop which means that
it shouldn’t accept no further messages.

A Shark engine can have an arbitrary number of protocol stubs. A sin-
gleton, the KEPStub, manages the underlying specific protocol stubs. KEP
messages are send firstly to the KEP stub. It checks the recipient address
and forwards the message to the appropriate protocol stub. This makes the
protocol specific adoptions and sends the message. Incoming request are re-
trieved by a protocol stub and send to the KEP stub. The KEP stub delivers
valid KEP messages to all active Knowledge Ports which perform the business
logic. KEP responses are send through the KEP Stub and so on.

1.5 iSphere - a Shark based social network

ISphere is an application based on Shark. There are two version: The full
version runs on J2SE and Android. A reduced version runs on J2ME devices.
Shark runs an each platform but the reduced version became necessary due to
the limited screens on J2ME phones. Neither the datastructure nor protocols
created a problem - it is just the GUI. This underlines the thesis in section
[CT that memory and bandwidth are no limiting factors nowadays.

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 17

ISphere illustrates the component based character of Shark. There is a
core which includes all DCS algorithms and the knowledge base. It is written
in Java 1.3 compliant code and runs on all Java platforms. Platform specific
protocol implementation became necessary due to the different protocol APIs
in J2SE, J2ME and Android. These implementations are now part of the
Shark framework and must not be reimplemented in further projects.

ISphere specific business logic had to be implemented. It was implemented
in Java 1.3 compliant code again and is cross platform compatible. This fact
should be coined out: Application specific code should be written in Java
1.3. It runs on each Java platform. Shark hides platform specifics from Shark
application developers.

Only developers who work inside the Shark framework has to create plat-
form specific code. Application developers don’t have to.

There are three different GUIs, though. They had been written from the
scratch with different technologies. It was also to proof the concept of the
framework. The PC GUI is a Web application based on the Wicke frame-
work. The PC shark engine is started with a web server. Users interact with
a Web browser with the local knowledge base. The Android GUIs has been
written with no additional tools, J2ME used the MIDP high level GUI APL

PC and Android GUlIs are strongly inspired by existing social network
app. Users see their own picture and can define their interests and profile
information. The mapping is different to ordinary Web 2.0 apps of course:

Each user is represented by a peer semantic tag. It contains a name (that
is only valid in the local knowledge base), a set of subject indicators e.g.
referencing a Web pages of the user and an arbitrary number of addresses
(addresses of Shark engines in GCF style).

Personal information like private telephone number, address of the user,
picture etc. are stored in the knowledge base with a context point. There is a
iSphere specific topic called profile. An user A stores its profile with a context
point with the coordinates (peer/originator: A, topic: profile).

Each user can define who is allowed to get her/his personal profile. This
can be done by a a list of remote users or by naming a user group. User groups
can defined locally in the knowledge base. User groups never leave the local
knowledge base.

Interesting topics can be defined in the topic dimension in the local knowl-
edge base. Semantic tags are used. Topics are not visible for other peers with-
out an interest for communication.

Anything that should propagated to other peers must be described in one
or more interests. Defining an interest is pretty simple: Users pick topics of
interests and define communication partner. They can also declare time and
place for an allowed communication and if they want to send or retrieve data.

Publishing data requires three steps:

12 http:/ /wicket.apache.org/

18 Thomas Schwotzer

1. Information (semantic tags and if wished information and context points)
must be created in the local knowledge base.

2. Interest define a context in which a communication shall take place.
Knowledge ports contain the application logic. They are activated with an
interest. Note: A knowledge port can also be passive. It can just wait for
incoming requests. Thus, it is possible to define a communication interest
which isn’t visible to other peers. Other peers cannot see anything from
the local knowledge base. They are only aware of the fact, that there is
a peer. They can send a KEP message or not. Such interest are called
silent or hidden interests.

3. User can also decide to (ezpose) an interest. In this case, other peer can
see the interests of a peer and not only the peer. The interest becomes
visible in this case.

ISphere can be configured. It can be decided what communication proto-
cols shall be used. In this paper, just one configuration shall be explained. It
shall illustrates the multi-protocol approach of Shark.

PC based engines communicate with E-Mail (POP/SMTP) with arbitrary
remote peers. There is a fully fledged GUI. User can define interests. Users
address in the peer semantic tag is an E-Mail address.

PC based engines can communicate via Bluetooth with J2ME phones. In
this configuration, it is assumed that each iSphere user has a J2ME phone and
an PC (or Laptop). There is a special knowledge port on both sides which
synchronizes both knowledge bases. Thus, when leaving, both KBs are in sync.

iSphere iSphere
GUI GUI
iSphere BL iSphere BL iSphere BL
J2ME | Bluetooth ™ josE J2SE E-Mail J2SE
BT Stub BT Stub | MailStub MailStub
iSphere J2ME version iSphere PC version with iSphere PC version
with Bluetooth Mail und Bluetooth with mail

Fig. 1.4. iSphere versions

The J2ME devices communicate via Bluetooth. Thus, these little mobile
devices can exchange interests and knowledge as any other Shark engine but
users cannot change the knowledge base. Screens are to small. But knowledge
bases are synchronized with the PC again. Now, newly retrieved knowledge
can be studied, thrown away or can be taken as a new part of the local personal
knowledge.

Moreover, a mobile device can also run in a silent mode (or harvesting
mode) which means it only collects interests from remote peers but doesn’t
send anything. After synchronization, the PC performs the interests and prob-
ably contacts other peers.

1 Distributed Context Space (DCS) - foundation of semantic P2P systems 19

1.6 Summary and Outlook

Lanier is right[Lanl0]. A serious number of Net application programmers are
trapped in a Lock In. The only natural way of writing a distributed application
seems to be a Web based application. This isn’t true.

ISphere proofs that social network applications can be implemented with-
out a server. Shark also demonstrated that subject indicator from Topic Maps
is an appropriate way to create a common vocabulary for P2P based loosely
coupled mobile networks. Shark also proofs that the concept of DCS can be
implemented. Actually, this wasn’t very surprising. Developers can implement
nearly any algorithm - it’s just a matter of time.

More important was the fact that Shark also proofed that the necessary
complexity of DCS can be hidden inside a framework. Simple Shark based
applications can be written without any understanding of semantics or mul-
tidimensional spaces or all the theoretical background. Only the concept of
tags and URLs must be understood. Writing Shark based applications is as
simple (or complicated) as writing a Servlet.

The proof of concept exists. Shark is an alpha version, iSphere is a proto-
type. The Shark project is sponsored by the German Ministry of Education
and Research. The project runs until 2012. At the and of the project, there
will be a released and well documented Shark framework. There will be an
iSphere tutorial which describes step by step how the social network app has
been build. Other Shark sub projects has been started recently. We work on a
system for location based information, a system for exchange of huge data like
video streams, a sensor based system and a distributed e-learning system. All
projects are based on Shark. All systems work without a server. The concepts
are already there. Shark stands for Shark Knowledge and it is open source:
Join us.

References

GMO5. GARSHOL, Lars M. ; MOORE, Graham: ISO 13250-2: Topic Maps — Data
Model / ISO/IEC JTC 1/SC34. 2005. — Forschungsbericht

Lan10. LANIER, Jaron: You Are Not a Gadget: A Manifesto. Knopf (Publisher),
2010. — ISBN 978-0307269645

Len98. LENAT, Doug: The Dimensions of Context-Space / CYC
CORP (www.cyc.com). 1998. - Forschungsbericht. —
http:www.cyc.com/context-space.rtf.doc,txt

MMO02. MAYMOUNKOV, Petar ; MAZIRES, David: Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric. In: Lecture Notes in Computer
Science 2429/2002 (2002), S. 53-65

MSO05. MAICHER, Lutz ; SCHWOTZER, Thomas: Distributed Knowledge Man-
agement in the Absence of Shared Vocabularies. In: Proceedings of the
5th International Conference on Knowledge Management (I-KNOW ’05).
Graz / Austria, July 2005

20 Thomas Schwotzer

Sch02.

Sch04.

Sch08.

Sch09a.

Sch09b.

SGO2.

Sow00.

Sto03.

The99.

W3C04a.

W3C04b.

SCHWOTZER, Thomas: Context Driven Spontaneous Knowledge Ex-
change. In: Proceedings of the 1st German Workshop on Ezxperience Man-
agement 2002 (GWEMO02), Berlin, 2002

SCHWOTZER, Thomas: Modelling Distributed Knowledge Management
Systems with Topic Maps. In: Proceedings of the 4th International Con-
ference on Knowledge Management (I-KNOW ’04), Graz, 2004, S. 52-59
SCHWOTZER, Thomas: Shark Framework.
https://sourceforge.net/projects/sharkfw. Version:started 2008
SCHWOTZER, Thomas: A Mobile Spontaneous Semantic P2P System.
In: Proceedings of the IEEE International Conference on Communication
Technology and Applications 2009 (ICCTA 2009), Beijing / China, IEEE,
2009

SCHWOTZER, Thomas: Multidimensional Topic Maps. In: Proceedings of
the International Conference on Topic Map Research and Applications
(TMRA’09), Leipzig, Springer, 2009

SCHWOTZER, Thomas ; GEIHS, Kurt: Shark — a System for Management,
Synchronization and Exchange of Knowledge in Mobile User Groups. In:
J.UCS 8, Issue 6 (2002)

Sowa, John F. ; KALLIE SWANSON, Mike S. (Hrsg.): Knowledge Repre-
sentation: logical, philosophical and computational foundations. Brooks
and Cole (Thomson Learning), 2000

Stoica, R.; Liben-Nowell D.; Karger D.R.; Kaashoek M.F.; Dabek F.;
Balakrishnan H. I.; Morris M. I.; Morris: Chord: a scalable peer-to-peer
lookup protocol for Internet applications. In: Transactions on Networking
11 (2003), S. 17-32

THEODORAKIS, M.: Contextualization: An Abstraction Mechanism for
Information Modeling, Department of Computer Science, University of
Crete, Greece, Diss., 1999

W3C: OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/. Version: 2004
W3C: Resource Description Framework (RDF).

http://www.w3.org/RDF/. Version: 2004

https://sourceforge.net/projects/sharkfw
http://www.w3.org/TR/owl-features/
http://www.w3.org/RDF/

	1 Distributed Context Space (DCS) - foundation of semantic P2P systems
	Thomas Schwotzer
	Introduction
	Distributed Context Space (DCS)
	Communication Concept - KEP
	Interests and Context Space
	Semantic Tags, Peer Semantic Tags
	Semantic Tag Sets

	Learning
	Background Knowledge and Contextualization
	Interests - a knowledge layer addressing schema

	Related work
	Shark - Shared Knowledge
	User Interfaces
	Knowledge Ports
	Protocol binding

	iSphere - a Shark based social network
	Summary and Outlook
	References

